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Preface 

This book treats the theory of electromagnetic propagation in layered media. 
It is intended as a text for a course in modern optics for electrical engineering 
or applied physics students. Students are assumed to have general knowledge 
in electromagnetism and elementary matrix algebra. Some mathematical 
background in Fourier expansion and elementary differential equations 
would be helpful. The primary objectives of this book are to present a clear 
picture of the propagation of optical waves in layered media and to teach the 
reader how to analyze and design optical devices using such layered media. 
Although there exist a number of books on similar subjects, most are either 
too narrow in scope or are in the form of monographs, which are not suitable 
as textbooks. 

Layered media play a very important role in many applications of modern 
optics. To fully utilize these media for transmission optics, we must under- 
stand the propagation of electromagnetic waves in these media. In addition, 
we must also be familiar with the systematic approaches used in the design 
of the layered structures. The emphasis is therefore on the theory of the 
propagation of optical waves in these media. An effort is made to bridge the 
gap between theory and practice through the use of numerical examples 
based on real situations. Only classical electrodynamics is used in dealing 
with the interaction of light with matter, except in the last chapter, where the 
subject of quantum wells is treated. Layered media that consist of isotropic 
and anisotropic materials are considered. Transmission and reflection of 
optical waves as well as the propagation of confined electromagnetic radiation 
are covered. A very wide range of topics is included, as may be seen from the 
table of contents. 

I am deeply indebted to Professor Amnon Yariv for introducing the optics 
of layered media to me during the years when I was a graduate student at 
Caltech, and for his enlightening teaching. Portions of chapters 6, 9, and 11 
first appeared, in different form, in Optical Waves in Crystals, co-authored by 
Professor Yariv and me. These materials are included here for completeness. 
I thank John Wiley & Sons and Professor Amnon Yariv for permission to 
reproduce these materials. My grateful thanks are also due to Drs. Joseph 
Longo, Derek Cheung, and Monte Khoshnevisan for their constant support 
and encouragement. I am also indebted to Drs. William Southwell and 
Kuo-Liang Chen and Mr. Paul Beckwith for their patient reading of the 
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manuscript and helpful suggestions and to Sandy Nestor for her patient and 
competent typing of the manuscript. Finally, [ am deeply grateful to my wife, 
Linda. Her love and devotion as a mother and wife have made the task at 
hand palatable and worthwhile. 

PocHi YEH 

Thousand Oaks, California 

May 1988
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1 
The Electromagnetic Field 

This book deals with the propagation of optical waves in layered media. In 
the first chapter, we review some of the basic properties of the propagation 
of electromagnetic radiation. These background materials are used frequently 
throughout the book and are included for completeness and as a ready source 
of reference. 

We begin by briefly reviewing Maxwell’s equations and the material 
equations. We then discuss the boundary conditions and the energy flow 

associated with electromagnetic radiation. These are followed by a derivation 
of the wave equations and an analysis of the propagation of monochromatic 
plane waves and some of their properties. Finally, we discuss the polarization 
state as well as the coherence of electromagnetic radiation. 

1.1 MAXWELL’S EQUATIONS AND BOUNDARY CONDITIONS 

1.1.1 Maxwell’s Equations 

The most fundamental equations in electrodynamics are Maxwell’s equations, 
which are given in the following in rationalized MKS units: 

vxE+ 2 _ o (1.1-1) 
Ot 

oD v e = ke X H = J, (1.1-2) 

V:D = o (1.1-3) 

V-B = 0. (1.1-4) 

In these equations, E and H are the electric field vector (in volts per meter) 

and magnetic field vector (in amperes per meter), respectively. These two field 
vectors are often used to describe an electromagnetic field. The quantities D 
and B are called the electric displacement (in coulombs per square meter) and 
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2 THE ELECTROMAGNETIC FIELD 

the magnetic induction (in webers per square meter), respectively. These two 
quantities are introduced to include the effect of the field on matter. The 
quantities ¢ and J are the electric charge (in coulombs per cubic meter) and 
current (in amperes per square meter) densities, respectively, and may be 
considered as the sources of the fields E and H. These four Maxwell equations 
completely determine the electromagnetic field and are the fundamental 
equations of the theory of such fields, that is, of electrodynamics. 

In optics, one often deals with propagation of electromagnetic radiation 
in regions of space where both charge density and current density are zero. 

In fact, if we set ¢ = 0 and J = 0 in Maxwell’s equations, we find that 

nonzero solutions exist. This means that an electromagnetic field can exist 
even in the absence of any charges and currents. Electromagnetic fields 
occurring in media in the absence of charges are called electromagnetic 
waves. 

Maxwell’s Equations (Eq. 1.1-1 to 1.1-4) consist of 8 scalar equations 
that relate a total of 12 variables, 3 for each of the 4 vectors E, H, D, and B. 

They cannot be solved uniquely unless the relationship between B and H and 
that between E and D are known. To obtain a unique determination of the 
field vectors, Maxwell’s equations must be supplemented by the so-called 
constitutive equations (or material equations), 

¢E = ¢E + P, (1.1-5) 

B uH = yH + M, (1.1-6) 

where the constitutive parameters ¢ and u are tensors of rank 2 and are 
known as the dielectric tensor (or permittivity tensor) and the permeability 
tensor, respectively; P and M are electric and magnetic polarizations, 
respectively. When an electromagnetic field is present in matter, the electric 
field can perturb the motion of electrons and produce a dipole polariza- 
tion P per unit volume. Analogously, the magnetic field can also induce a 
magnetization M in materials having a permeability that is different from g, . 
The constant ¢, is called the permittivity of a vacuum and has a value 
of 8.854 x 10" F/m. The constant y, is known as the permeability of a 
vacuum. It has, by definition, the exact value of 47 x 1077 H/m. If the 

material medium is isotropic, both ¢ and u tensors reduce to scalars. In many 
cases, the quantities ¢ and u can be assumed to be independent of the field 
strengths. However, if the fields are sufficiently strong, such as obtained, for 

example, by focusing a laser beam or applying a strong dc electric field to an 
electro-optic crystal, the dependence of these quantities on E and H must be 
considered. These nonlinear optical effects are beyond the scope of this 
book.
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1.1.2 Boundary Conditions 

One of the most important problems in determining the reflection and 
transmission of electromagnetic radiation through a layered medium is the 
continuity of some components of the field vectors at the dielectric interfaces 
between the layers. Although the physical properties (characterized by ¢ 
and pu) may change abruptly across the dielectric interfaces, there exist 
continuity relationships of some of the components of the field vectors at the 
dielectric boundary. These continuity conditions can be derived directly from 
Maxwell’s equations. 

Consider a boundary surface separating two media with different dielectric 
permittivity and permeability (medium 1 and medium 2). To obtain the 
boundary conditions for B and D, we construct a thin cylinder over a unit 

area of the surface, as shown in Fig. 1.1(a). The end faces of the cylinder are 
parallel to the surface. We now apply the Gauss divergence theorem 

jv-FdV: jFods (L1-T 

to both sides of Egs. (1.1-3) and (1.1-4). The surface integral reduces, in the 
limit as the height of the cylinder approaches zero, to an integral over the end 
surfaces only. This leads to 

n-B,—-B) =0, n-(D —D) = o, (1.1-8) 

C 

2 
1 

(a) (b) 

  

Figure 1.1 (a) A short cylinder about the interface between two media: S is the surface of this 
cylinder. (b) A narrow rectangle about the interface between two media; C is the boundary of 

this rectangle. (Adapted from A. Yariv and P. Yeh, Optical Waves in Crystals, Wiley, New York, 
1984, p. 3. Copyright © 1984. By permission of John Wiley & Sons, Inc.)



4 THE ELECTROMAGNETIC FIELD 

where n is the unit normal to the surface directed from medium 1 into 

medium 2, ¢ is the surface charge density (in coulombs per square meter), and 

the subscripts refer to values at the surfaces in the two media. The boundary 
conditions (1.1-8) are often written as 

B2n == Blns D2n_Dln = Uy (11'9) 

where B,, = B,*n, B, = B,*n, D,, = D,*n, and D,, = D, * n. In other 
words, the normal component of the magnetic induction B is always con- 

tinuous, and the difference between the normal components of the electric 
displacement D is equal in magnitude to the surface charge density o. 

For the field vectors E and H, we draw a rectangular contour with two 

long sides parallel to the surface of discontinuity, as shown in Fig. 1.1(b). We 
now apply the Stokes theorem 

ijF-ds = jF-dt (1.1-10) 

to both sides of Eqgs. (1.1-1) and (1.1-2). The contour integral reduced, in the 
limit as the width of the rectangle approaches zero, to an integral over the two 
long sides only. This leads to 

nXxE —E) =0 nx®H-H) =K, (LI-11) 

where K is the surface current density (in amperes per meter). Again, the 
boundary conditions for the electric and magnetic field vectors (1.1-11) are 
often written as 

E, = E1t9 H,, — H,, = K, (1:1-12) 

where the subscript 1 means the tangential component of the field vector. 

(Note: The tangential components of these field vectors to the boundary 
surface are still vectors in the tangential plane of the surface.) In other 
words, the tangential component of the electric field vector E is always 
continuous at the boundary surface, and the difference between the tangential 
components of the magnetic field vector H is equal to the surface current 
density K. 

In many areas of optics, one often deals with situations in which the 
surface charge density ¢ and the surface current density K both vanish. It 
follows that, in such a case, the tangential components of E and H and 
the normal components of D and B are continuous across the interface 
separating media 1 and 2. These boundary conditions are important in 
solving many wave propagation problems in optics, such as guided-wave 
optics (Chapter 11) and wave propagation in layered media.
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1.2 ENERGY DENSITY AND ENERGY FLUX 

It has been known for some time that light carries energy with it and is a form 
of electromagnetic radiation. The first and most conspicuous success of 
Maxwell’s theory was the prediction of the existence of electromagnetic 
waves and the transport of energy. We now consider two of the most 
important aspects of electrodynamics: the energy density stored with an 
electromagnetic wave and the energy flux associated with an electromagnetic 
wave. To derive the energy density and the energy flux, we consider the 
conservation of energy in a small volume. The work done per unit volume by 
an electromagnetic field is J - E, which may also be considered as the energy 
dissipation per unit volume. This energy dissipation must be connected with 
the net decrease in the energy density and the energy flow out of the volume. 
According to Eq. (1.1-2), the work done by the electromagnetic field can be 
written as 

J*E = E-(VXH)—E-%—?. (1.2-1) 

If we now employ the vector identity 

V:(EXH) = H- (VX E) — E-(V X H) (1.2-2) 

and use Eq. (1.1-1), the right side of (1.2-1) becomes 

0B oD 
FE = “ViERH=H o =B (1.2-3) 

If we now further assume that the material medium involved is linear in 
its electromagnetic properties (i.e., ¢ and u are independent of the field 
strengths), Eq. (1.2-3) can be written as 

— +V-S = —J-E, (1.2-4) 

where U and S are defined as 

U= XE-D + B-H), (1.2-5) 

S = E x H. (1.2-6) 

The scalar U represents the energy density of the electromagnetic fields and 
has the dimensions of joules per cubic meter. The vector S, representing the
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energy flux, is called Poynting’s vector and has the dimensions of joules per 
square meter per second. It is consistent to view |S| as the power per unit area 
(watts per square meter) carried by the field in the direction of S. The quantity 
V - S thus represents the net electromagnetic power flowing out of a unit 
volume. Equation (1.2-4) is known as the continuity equation or Poynting’s 
theorem. It represents conservation of energy for the electromagnetic field. 
The conservation laws for the linear momentum of electromagnetic fields can 
be obtained in a similar way. This is left as a problem for the student 
(Problem 1.4). 

1.3 COMPLEX NUMBERS AND MONOCHROMATIC FIELDS 

It is known that monochromatic light has a unique angular frequency of 
oscillation. Although most light sources consist of a distribution of the 
angular frequencies, we will investigate the properties of layered media using 
monochromatic light. This is legitimate because throughout the book we 
assume that the materials involved in layered media are linear and that each 
frequency component of light interacts independently with the media. For 
monochromatic light, the field vectors are sinusoidal functions of time, and 

it 1S convenient to represent each field vector as a complex exponential 
function. The reason we do this is that it is easier to work with exponential 
functions than with cosine or sine. As an example, consider some component 
of the field vectors: 

a(t) = |A|cos(wt + a), (1.3-1) 

where w is the angular frequency and « is the phase. If we define a complex 
amplitude of a(¢) by 

4 = |Alg”, (1.3-2) 

Eq. (1.3-1) can be written as 

ali} = Relded™), (1.3-3) 

We will often represent a(r) by 

a(t) = Ae* (1.3-4) 

instead of by Eq. (1.3-1) or (1.3-3). This is sometimes referred to as the 
~analytic representation. We must understand that the complex number so 
defined is not a real physical component because no electromagnetic field in
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physics is complex; actually, field vectors have no imaginary parts, only real 
parts. We shall, however, speak of the “field”” 4 exp (iwt), but of course, the 
actual field is the real part of that expression. Using complex representations, 
the monochromatic fields are written as exponential functions. This leads to 
great mathematical simplification. For example, differentiation can now be 
replaced by a simple multiplication. The exceptions are cases that involve the 
product (or powers) of field vectors such as energy density and Poynting’s 
vector. In these cases, one must use the real form of the physical quantities. 

As an example, consider the product of two sinusoidal functions a(z) and 
b(t), where 

a(t) = |A|cos .(wt + ) (1.3:5) 

= Re[A4e"] 

and 

b(t) = |B|cos(wt + p) (1.3-6) 

Re [Be™'], 

with 4 = |A4|exp (iz) and B = |B|exp (if). Using the real functions, we get 

a(t)b(t)y = 1|AB|[cosRwt + a + B) + cos(x — B)].  (1.3-7) 

But if we were to evaluate the product a(¢)b(z) with the complex form of the 
functions, we would get 

a()b() = ABe™ = |AB|e®!+2+P (1.3-8) 

A comparison of the last result to Eq. (1.3-7) shows that the time-independent 
(dc) term 1|AB|cos (x — p)is missing, and thus the use of the complex form 

led to an error. Generally speaking, the product of the real part of two 
complex numbers may not be equal to the real part of the product of these 

two complex numbers. In other words, if x and y are two arbitrary complex 
numbers, the following is generally true: 

Re[x] - Re[y] # Re[xy]. (1.3-9) 

1.3.1 Time Averaging of Sinusoidal Products 

In optical fields, the field vectors are rapidly varying functions of time. For 

example, the period of a time-varying field with a wavelength 4 = 1 um is 
T = A/c = 0.33 x 10 "s. One often considers the time-averaged values
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rather than the instantaneous values of many physical quantities such as 

Poynting’s vector and the energy density. It is frequently necessary to find 

the time average of the product of two sinusoidal functions of the same 
frequency: 

1 
@b = = [, 14lcos (r + @)|Blcos(wr + B)dr, (1.3-10) 

where a(?) and b(¢z) are given by Egs. (1.3-5) and (1.3-6) and the angle 
brackets denote time averaging; T = 27/w is the period of oscillation. Since 
the integral in Eq. (1.3-10) is periodic in 7, the averaging can be performed 
over a time 7. By using Eq. (1.3-7), we obtain directly 

(a(t)b(t)) = 1|AB|cos(x — p) (1.3-11) 

since the average of T of the term involving cos (2wt + a + p) is zero. This 

last result can be written in terms of the complex amplitudes 4 and B, defined 
immediately following Eq. (1.3-6) as 

{a(t)b(t)) = 1Re[AB¥*] (1.3-12) 

or in terms of the analytic form of a(¢) and b(¢) directly as 

(Refa(O]Re[b(1)]) = 3Rela(t)b*(1)]. (13-13) 

where the superscript asterisk indicates the complex conjugate. The time 
dependence on the right side of Eq. (1.3-13) disappears because both a(¢) and 

b(t) have the same sinusoidal time dependence exp (iw?). These two results, 
Eqgs. (1.3-12) and (1.3-13), are important and will find frequent use through- 
out the book. 

By using the complex formalism (or analytic representation) for the field 
vectors E, H, D, and B, the time-averaged Poynting’s vector (1.2-6) and the 
energy density (1.2-5) for sinusoidally varying fields are given by 

S = 1Re[E x H* (1.3-14) 

and 

U 1Re[E - D* + B - H*] (1.3-15) 

respectively. 

1.4 WAVE EQUATIONS AND MONOCHROMATIC 
PLANE WAVES 

Two of the most important results of Maxwell’s equations are the wave 

equations and the existence of electromagnetic waves that are solutions to
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them. We now derive the wave equations in material media. This is achieved 

by mathematical elimination so that each of the field vectors satisfies a 
differential equation. We limit our attention to regions where both charge 
density ¢ and current density J vanish. We also assume in this section that 

the medium is isotropic, so that ¢ and u are scalars. 

If we use the constitutive relation (1.1-6) for B in Eq. (1.1-1), divide both 

sides by u, and apply the curl operator, we obtain 

Vx(leE)+£VXH = (. (1.4-1) 
i ot 

If we now differentiate Eq. (1.1-2) with respect to time, combine it with 

Eq. (1.4-1), and use the material Eq. (1.1-5), we obtain 

  

2 

Vx(%VxE)+aaE = 0. (1.4-2) 

We now employ the vector identities 

Vx(leE) v x (v x E)+(V1)x(v x E) (1.4-3) 
u u u 

and 

VX (VXE) = V(V-E) — V°E, (1.4-4) 

and Eq. (1.4-2) becomes 

2 

VzE—,us%—tl;:HVlnu)x (VXE)—V(V-E) = 0. (1.4-5) 

By substituting for D from Eq. (1.1-5) into Eq. (1.1-3) and applying the vector 
identity 

V:-(éE) = &V-E + E- Vg, (1.4-6) 

we obtain, from Eq. (1.4-5), 

2 E 
VzE—u8%+(V1nu)x(VxE)+V(E-Vln8) = 0. (1.4-7) 

This 1s the wave equation for the field vector E. The wave equation for the 
magnetic field vector H can be obtained in a similar way and is given by 

*H 
VH — pe > + (Vine) X (V X H) + VH VInpg) = 0. (1.4-8)
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Inside a homogeneous and isotropic medium, the gradient of the logarithm 

of ¢ and u vanishes, and the wave Eqgs. (1.4-7) and (1.4-8) reduce to 

2E ZH 

VZE — pue il = 1} V'H — pe a@tz   = 0. (1.4-9) 

These are the standard electromagnetic wave equations. They are satisfied by 

the well-known monochromatic plane wave 

Y = Ae@T, (1.4-10) 

where A4 is a constant and is the amplitude. In Eq. (1.4-10), the angular 

frequency w and the magnitude of the wave vector k are related by 

k| = woue (1.4-11) 

and ¥ can be any Cartesian component of E and H. 
Let us now examine the meaning of this solution. In each plane, 

k - r = constant (const), the field is a sinusoidal function of time. At each 

given moment, the field is a sinusoidal function of space. It is clear that the 

field has the same value for coordinates r and times 7, which satisfy 

wt — k-r = const, (1.4-12) 

where the constant is arbitrary and determines the field value. Equation 
(1.4-12) determines a plane normal to the wave vector k at any instant ¢. 
This plane is called a surface of constant phase. The surfaces of constant 

phases are often referred to as wavefronts. The electromagnetic wave 

represented by Eq. (1.4-10) is called a plane wave because all the wavefronts 
are planar. It is easily seen that the surfaces of constant phase travel in the 
direction of k with a velocity whose magnitude is 

Q) 
= —. 4- v k (1.4-13) 

This 1s the phase velocity of the wave. We let 1 = 0 and examine the spatial 

variation, the separation between two neighboring field peaks, that is, the 

wavelength is 

ll = Igp—. (1.4-14) 

where the prime indicates the wavelength of light inside the medium. In 

optics, 4 is reserved for the wavelength of light in a vacuum.


