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Pretace

This book treats the theory of electromagnetic propagation in layered media.
[t 1s intended as a text for a course in modern optics for electrical engineering
or applied physics students. Students are assumed to have general knowledge
in electromagnetism and elementary matrix algebra. Some mathematical
background in Fourier expansion and elementary differential equations
would be helpful. The primary objectives of this book are to present a clear
picture of the propagation of optical waves in layered media and to teach the
reader how to analyze and design optical devices using such layered media.
Although there exist a number of books on similar subjects, most are either
too narrow 1n scope or are in the form of monographs, which are not suitable
as textbooks.

Layered media play a very important role in many applications of modern
optics. To fully utilize these media for transmission optics, we must under-
stand the propagation of electromagnetic waves in these media. In addition,
we must also be familiar with the systematic approaches used in the design
of the layered structures. The emphasis is therefore on the theory of the
propagation of optical waves in these media. An effort is made to bridge the
gap between theory and practice through the use of numerical examples
based on real situations. Only classical electrodynamics is used in dealing
with the interaction of light with matter, except in the last chapter, where the
subject of quantum wells 1s treated. Layered media that consist of isotropic
and anisotropic materials are considered. Transmission and reflection of
optical waves as well as the propagation of confined electromagnetic radiation
are covered. A very wide range of topics 1s included, as may be seen from the
table of contents.

I am deeply indebted to Professor Amnon Yariv for introducing the optics
of layered media to me during the years when I was a graduate student at
Caltech, and for his enlightening teaching. Portions of chapters 6, 9, and 11
first appeared, in different form, in Optical Waves in Crystals, co-authored by
Protessor Yariv and me. These materials are included here for completeness.
I thank John Wiley & Sons and Professor Amnon Yariv for permission to
reproduce these materials. My grateful thanks are also due to Drs. Joseph
Longo, Derek Cheung, and Monte Khoshnevisan for their constant support
and encouragement. I am also indebted to Drs. William Southwell and
Kuo-Liang Chen and Mr. Paul Beckwith for their patient reading of the
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manuscript and helpful suggestions and to Sandy Nestor for her patient and
competent typing of the manuscript. Finally, T am deeply grateful to my wife.

Linda. Her love and devotion as a mother and wife have made the task at
hand palatable and worthwhile.

PocHI YEH

Thousand Oaks, California
May 1988
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1

The Electromagnetic Field

This book deals with the propagation of optical waves in layered media. In
the first chapter, we review some of the basic properties of the propagation
of electromagnetic radiation. These background materials are used frequently
throughout the book and are included for completeness and as a ready source
of reference.

We begin by briefly reviewing Maxwell’s equations and the material
equations. We then discuss the boundary conditions and the energy flow
assoclated with electromagnetic radiation. These are followed by a derivation
of the wave equations and an analysis of the propagation of monochromatic
plane waves and some of their properties. Finally, we discuss the polarization
state as well as the coherence of electromagnetic radiation.

1.1 MAXWELL’S EQUATIONS AND BOUNDARY CONDITIONS

1.1.1 Maxwell’s Equations

The most fundamental equations in electrodynamics are Maxwell’s equations,
which are given in the following in rationalized MKS units:

V X E +£‘3-E = 1 (1.1-1)
Ot
oD
Vv — — 1-
X H -~ " B (1.1-2)
yill = o (1.1-3)
V:-B = 0. (1.1-4)

In these equations, E and H are the electric field vector (in volts per meter)
and magnetic field vector (in amperes per meter), respectively. These two field
vectors are often used to describe an electromagnetic field. The quantities D
and B are called the electric displacement (in coulombs per square meter) and

|



2 THE ELECTROMAGNETIC FIELD

the magnetic induction (in webers per square meter), respectively. These two
quantities are introduced to include the effect of the field on matter. The
quantities ¢ and J are the electric charge (in coulombs per cubic meter) and
current (in amperes per square meter) densities, respectively, and may be
considered as the sources of the fields E and H. These four Maxwell equations
completely determine the electromagnetic field and are the fundamental
equations of the theory of such fields, that 1s, of electrodynamics.

In optics, one often deals with propagation of electromagnetic radiation
In regions of space where both charge density and current density are zero.
In fact, if we set ¢ = 0 and J = 0 1n Maxwell’s equations, we find that
nonzero solutions exist. This means that an electromagnetic field can exist
even in the absence of any charges and currents. Electromagnetic fields
occurring in media in the absence of charges are called electromagnetic
waves.

Maxwell’'s Equations (Eq. 1.1-1 to 1.1-4) consist of 8 scalar equations
that relate a total of 12 variables, 3 for each of the 4 vectors E, H, D. and B.
They cannot be solved uniquely unless the relationship between B and H and
that between E and D are known. To obtain a unique determination of the
field vectors, Maxwell’s equations must be supplemented by the so-called
constitutive equations (or material equations),

D = ¢E = ¢E + P, (1.1-5)
B = uH = uH + M, (1.1-6)

where the constitutive parameters ¢ and u are tensors of rank 2 and are
known as the dielectric tensor (or permittivity tensor) and the permeability
tensor, respectively; P and M are electric and magnetic polarizations,
respectively. When an electromagnetic field is present in matter, the electric
field can perturb the motion of electrons and produce a dipole polariza-
tion P per unit volume. Analogously, the magnetic field can also induce a
magnetization M in materials having a permeability that is different from g, .
The constant ¢, 1s called the permittivity of a vacuum and has a value
of 8.854 x 10 '* F/m. The constant y, is known as the permeability of a
vacuum. It has, by definition, the exact value of 47 x 107" H/m. If the
material medium 1s isotropic, both ¢ and u tensors reduce to scalars. In many
cases, the quantities ¢ and u can be assumed to be independent of the field
strengths. However, if the fields are sufficiently strong, such as obtained, for
example, by focusing a laser beam or applying a strong dc electric field to an
electro-optic crystal, the dependence of these quantities on E and H must be

considered. These nonlinear optical effects are beyond the scope of this
book.
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1.1.2 Boundary Conditions

One of the most important problems in determining the reflection and
transmission of electromagnetic radiation through a layered medium is the
continuity of some components of the field vectors at the dielectric interfaces
between the layers. Although the physical properties (characterized by ¢
and p) may change abruptly across the dielectric interfaces, there exist
continuity relationships of some of the components of the field vectors at the
dielectric boundary. These continuity conditions can be derived directly from
Maxwell’s equations.

Consider a boundary surface separating two media with different dielectric
permittivity and permeability (medium 1 and medium 2). To obtain the
boundary conditions for B and D, we construct a thin cylinder over a unit
area of the surface, as shown in Fig. 1.1(a). The end faces of the cylinder are
parallel to the surface. We now apply the Gauss divergence theorem

jV-FdV = fF-ds (1.1-7)

to both sides of Eqgs. (1.1-3) and (1.1-4). The surface integral reduces, in the
limit as the height of the cylinder approaches zero, to an integral over the end
surfaces only. This leads to

n-(B, — B,) = 0, n-(D, —

=

D) = o, (1.1-8)

E—3

(a) (b)

Figure 1.1 (a) A short cylinder about the interface between two media: S is the surface of this
cylinder. (b) A narrow rectangle about the interface between two media; C is the boundary of
this rectangle. (Adapted from A. Yariv and P. Yeh, Optical Waves in Crystals, Wiley, New York,
1984, p. 3. Copyright © 1984. By permission of John Wiley & Sons, Inc.)
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where n 1s the unit normal to the surface directed from medium 1 into
medium 2, ¢ 1s the surface charge density (in coulombs per square meter), and
the subscripts refer to values at the surfaces in the two media. The boundary
conditions (1.1-8) are often written as
B,, = B, D,, — D, = o, (1.1-9)
where B,, = B,*n, B,, = B,*n, D,, = D,*n, and D,, = D, * n. In other
words, the normal component of the magnetic induction B is always con-
tinuous, and the difference between the normal components of the electric
displacement D 1s equal in magnitude to the surface charge density o.
For the field vectors E and H, we draw a rectangular contour with two

long sides parallel to the surface of discontinuity, as shown in Fig. 1.1(5). We
now apply the Stokes theorem

|VxF-dS = | F-dl (1.1-10)

to both sides of Egs. (1.1-1) and (1.1-2). The contour integral reduced, in the
limit as the width of the rectangle approaches zero, to an integral over the two
long sides only. This leads to

n X (E,—E) = 0, n X H, — H) = K, (1.1-11)

where K 1s the surface current density (in amperes per meter). Again, the
boundary conditions for the electric and magnetic field vectors (1.1-11) are
often written as

Ezr i E]n Hz: - Hu - Ka (1-1"12)

where the subscript 1 means the tangential component of the field vector.
(Note: The tangential components of these field vectors to the boundary
surface are still vectors in the tangential plane of the surface.) In other
words, the tangential component of the electric field vector E is always
continuous at the boundary surface, and the difference between the tangential
components of the magnetic field vector H is equal to the surface current
density K.

In many areas of optics, one often deals with situations in which the
surface charge density o and the surface current density K both vanish. It
follows that, in such a case, the tangential components of E and H and
the normal components of D and B are continuous across the interface
separating media 1 and 2. These boundary conditions are important in
solving many wave propagation problems in optics, such as guided-wave
optics (Chapter 11) and wave propagation in layered media.



1.2 ENERGY DENSITY AND ENERGY FLUX S

1.2 ENERGY DENSITY AND ENERGY FLUX

It has been known for some time that light carries energy with it and is a form
of electromagnetic radiation. The first and most conspicuous success of
Maxwell’s theory was the prediction of the existence of electromagnetic
waves and the transport of energy. We now consider two of the most
important aspects of electrodynamics: the energy density stored with an
electromagnetic wave and the energy flux associated with an electromagnetic
wave. To derive the energy density and the energy flux, we consider the
conservation of energy in a small volume. The work done per unit volume by
an electromagnetic field 1s J - E, which may also be considered as the energy
dissipation per unit volume. This energy dissipation must be connected with
the net decrease in the energy density and the energy flow out of the volume.

According to Eq. (1.1-2), the work done by the electromagnetic field can be
written as

g ol = E-(VXH)—-—E-%—?. (1.2-1)
If we now employ the vector identity
V' (EXH) = H-(VXE)—E-(VXH) (1.2-2)

and use Eq. (1.1-1), the right side of (1.2-1) becomes

_ B oD .
J'E = -V-EXH -H-— - E-—. (1.2-3)

[f we now further assume that the material medium involved is linear in
1ts electromagnetic properties (1.e., ¢ and u are independent of the field
strengths), Eq. (1.2-3) can be written as

oU

E—I—V'S = - * (1.2-4)
where U and S are defined as

U = (E-D + B-H), (1.2-5)

S = E X H. (1.2-6)

The scalar U represents the energy density of the electromagnetic fields and
has the dimensions of joules per cubic meter. The vector S, representing the
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energy flux, 1s called Poynting’s vector and has the dimensions of joules per
square meter per second. It 1s consistent to view |S| as the power per unit area
(watts per square meter) carried by the field in the direction of S. The quantity
V - S thus represents the net electromagnetic power flowing out of a unit
volume. Equation (1.2-4) is known as the continuity equation or Poynting’s
theorem. It represents conservation of energy for the electromagnetic field.
The conservation laws for the linear momentum of electromagnetic fields can

be obtained in a similar way. This i1s left as a problem for the student
(Problem 1.4).

1.3 COMPLEX NUMBERS AND MONOCHROMATIC FIELDS

[t 1s known that monochromatic light has a unique angular frequency of
oscillation. Although most light sources consist of a distribution of the
angular frequencies, we will investigate the properties of layered media using
monochromatic light. This is legitimate because throughout the book we
assume that the materials involved in layered media are linear and that each
frequency component of light interacts independently with the media. For
monochromatic light, the field vectors are sinusoidal functions of time, and
It 18 convenient to represent each field vector as a complex exponential
function. The reason we do this is that it is easier to work with exponential
functions than with cosine or sine. As an example, consider some component
of the field vectors:

a(t) = |A|cos(wt + o), (1.3-1)

where w 1s the angular frequency and « is the phase. If we define a complex
amplitude of a(¢) by

A = |Mle*, (1.3-2)
Eq. (1.3-1) can be written as
alt) = Rel[4%]. (1.3-3)
We will often represent a(z) by
alt) = Ag™ (1.3-4)

instead of by Eq. (1.3-1) or (1.3-3). This is sometimes referred to as the
‘analytic representation. We must understand that the complex number so
defined 1s not a real physical component because no electromagnetic field in
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physics 1s complex; actually, field vectors have no imaginary parts, only real
parts. We shall, however, speak of the “field” 4 exp (iwt), but of course, the
actual field 1s the real part of that expression. Using complex representations,
the monochromatic fields are written as exponential functions. This leads to
great mathematical simplification. For example, differentiation can now be
replaced by a simple multiplication. The exceptions are cases that involve the
product (or powers) of field vectors such as energy density and Poynting’s
vector. In these cases, one must use the real form of the physical quantities.

As an example, consider the product of two sinusoidal functions a(¢) and
b(t), where

a(t) = |A|cos(wt + o)
] (1.3-5)
= Rel4de™]
and
b(t) = |B|cos(wt + f) (1.3-6)

Re[Be™],
with 4 = |A4|exp(ix) and B = |B|exp (if). Using the real functions, we get
a(t)b(t) = %|AB|[cos(Qwt + o« + B) + cos(ax — ). (1.3-7)

But if we were to evaluate the product a(7)b(¢) with the complex form of the
functions, we would get

a(Db(t) = ABe™ = |AB|e®+eth (1.3-8)

A comparison of the last result to Eq. (1.3-7) shows that the time-independent
(dc) term 1 |AB|cos (a2 — f) is missing, and thus the use of the complex form
led to an error. Generally speaking, the product of the real part of two
complex numbers may not be equal to the real part of the product of these

two complex numbers. In other words, if x and y are two arbitrary complex
numbers, the following i1s generally true:

Relx]* Rel ]l & Relxyl. (1.3-9)

1.3.1 Time Averaging of Sinusoidal Products

In optical fields, the field vectors are rapidly varying functions of time. For
example, the period of a time-varying field with a wavelength 4 = 1 um 1is
T = Alec = 0.33 x 10 "“s. One often considers the time-averaged values



8 THE ELECTROMAGNETIC FIELD

rather than the instantaneous values of many physical quantities such as
Poynting’s vector and the energy density. It is frequently necessary to find
the time average of the product of two sinusoidal functions of the same
frequency:

e 1

(b)) = = | |4lcos(t + 2)|Blcos(wr + B)dr, (1.3-10)
where a(t) and b(¢) are given by Egs. (1.3-5) and (1.3-6) and the angle
brackets denote time averaging; 7' = 2n/w 1s the period of oscillation. Since
the integral in Eq. (1.3-10) 1s periodic in 7, the averaging can be performed
over a time 7. By using Eq. (1.3-7), we obtain directly

Ca(t)b(t)) = L|AB|cos(a — B) (1.3-11)

since the average of T of the term involving cos (2wt + a« + p) is zero. This
last result can be written in terms of the complex amplitudes 4 and B, defined
immediately following Eq. (1.3-6) as

Ca(t)b(t)) = LRe[AB¥] (1.3-12)
or 1n terms of the analytic form of a(r) and b(¢) directly as
(Rela(t)|Re[b(r)]) = 35Rela(t)b*(1)). (1.3-13)

where the superscript asterisk indicates the complex conjugate. The time
dependence on the right side of Eq. (1.3-13) disappears because both a(¢) and
b(t) have the same sinusoidal time dependence exp (iwt). These two results,
Egs. (1.3-12) and (1.3-13), are important and will find frequent use through-
out the book.

By using the complex formalism (or analytic representation) for the field
vectors E, H, D, and B, the time-averaged Poynting’s vector (1.2-6) and the
energy density (1.2-5) for sinusoidally varying fields are given by

S = 1Re[E X H¥] (1.3-14)
and

U = 1lRe[E-D* + B-H*| (1.3-15)

respectively.

1.4 WAVE EQUATIONS AND MONOCHROMATIC
PLANE WAVES

Two of the most important results of Maxwell’s equations are the wave
equations and the existence of electromagnetic waves that are solutions to
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them. We now derive the wave equations in material media. This 1s achieved
by mathematical elimination so that each of the field vectors satisfies a
differential equation. We limit our attention to regions where both charge
density o and current density J vanish. We also assume 1n this section that
the medium 1s 1sotropic, so that ¢ and u are scalars.

[f we use the constitutive relation (1.1-6) for B in Eq. (1.1-1), divide both
sides by u, and apply the curl operator, we obtain

Vx(leE)-l—éVxH = (. (1.4-1)
Il Ot

If we now differentiate Eq. (1.1-2) with respect to time, combine it with
Eq. (1.4-1), and use the material Eq. (1.1-5), we obtain

0°E
ot*

|
VX(;VXE)‘FS

= 0. (1.4-2)

We now employ the vector identities

Vx(—l-VxE) le(VxE)+(Vl)x(VxE) (1.4-3)
U H 2

and
VX(VXE) = V(V-E) — V°E, (1.4-4)
and Eq. (1.4-2) becomes

2
V2E — ua%—f +(Ving) X (VX E)—V(V-E) = 0. (1.4-5)

By substituting for D from Eq. (1.1-5) into Eq. (1.1-3) and applying the vector
identity

V:(éE) = é&V-E + E - Vg, (1.4-6)
we obtain, from Eq. (1.4-5),

0°E
ot

VE — ue— + (Vin ) X (VX E)+ VIE-VIng) = 0. (1.4-7)

This 1s the wave equation for the field vector E. The wave equation for the
magnetic field vector H can be obtained in a similar way and is given by

0'H

V'H — ue PP

+ (Ving) X (VX H) + VH -VInyg) = 0. (1.4-8)
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Inside a homogeneous and 1sotropic medium, the gradient of the logarithm
of ¢ and u vanishes, and the wave Egs. (1.4-7) and (1.4-8) reduce to

O°E . °H
V’E — pue =y - 0, V'H — pue PP

= B (1.4-9)

These are the standard electromagnetic wave equations. They are satisfied by
the well-known monochromatic plane wave

W = Ae @ k" (1.4-10)

where 4 1s a constant and 1s the amplitude. In Eq. (1.4-10), the angular
frequency @ and the magnitude of the wave vector k are related by

k| = w\/ue (1.4-11)

and y can be any Cartesian component of E and H.

Let us now examine the meaning of this solution. In each plane,
k - r = constant (const), the field 1s a sinusoidal function of time. At each
given moment, the field i1s a sinusoidal function of space. It is clear that the
field has the same value for coordinates r and times ¢, which satisfy

wt — k*r = const, (1.4-12)

where the constant 1s arbitrary and determines the field value. Equation
(1.4-12) determines a plane normal to the wave vector k at any instant ¢.
This plane 1s called a surface of constant phase. The surfaces of constant
phases are often referred to as wavefronts. The electromagnetic wave
represented by Eq. (1.4-10) 1s called a plane wave because all the wavefronts
are planar. It 1s easily seen that the surfaces of constant phase travel in the
direction of k with a velocity whose magnitude is

)

This 1s the phase velocity of the wave. We let ¢+ = 0 and examine the spatial
variation, the separation between two neighboring field peaks, that is, the
wavelength 1s

2T v

/1! _— —— = —_— =
: 2 — (1.4-14)

where the prime indicates the wavelength of light inside the medium. In
optics, 4 1s reserved for the wavelength of light in a vacuum.



